Simulation plots for Pre-CDR

Jin Huang (BNL)
Also for Megan Connors and Stefan Bathe

Pre-CDR plot summary

- Single particle (e/mu/pi/p/gamma/pi0)
 - Line shapes [Jin]- Done
 - Sampling fraction [Jin]<- Done
 - Linearity [Jin]C- Done
 - Energy resolution [Jin] <- Done
 - Lateral extension [Jin] <- Done : Use old plots
 - Dynamic range [Jin] <- Done
- Au+Au HIJING embedded
 - Underlying event energy and fluctuation [Jin]
 - <- Done
 - Rejection vs efficiency for electrons [Jin]
 - <- Fixing track proj. tools,
 - <- pending embedding production and analysis tools
 - Photon resolution [Stefan and Megan]
 - <- Promising PHENIX Clusterizer, need embedding
- EM energy trigger performance
 - Turn-on curve [Jin] <- Done

Software tools

- Software: in analysis repository
 - https://github.com/sPHENIX-Collaboration/analysis/tree/master/EMCal-analysis
 - Analysis module : EMCal-analysis/EMCalAna
 - Plot macros: EMCal-analysis/macro
- Mike's evaluator tool are very useful in trace between truth and reco track/towers
- Fun4All analysis module to build my ntuple of emcal focused analysis

Test beam comparison: 8 GeV beams shower in Geant4 VS data

Full Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (2ADC), photon fluctuation (500e/GeV), NO fiber/fiber response

Test beam comparison: 4.12 GeV/c beams shower in Geant4 VS data

Full Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (2ADC), photon fluctuation (500e/GeV), NO fiber/fiber response

Test beam comparison: 12 GeV/c beams shower in Geant4 VS data

Full Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (2ADC), photon fluctuation (500e/GeV), NO fiber/fiber response

Sampling Fraction

Lateral extension of shower

Linearality – double checking

Energy resolution VS test beam

Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (8pe), photon fluctuation (500pe/GeV), Zero sup (16pe/32MeV), Graph Clusterizer

Incoming Energy (GeV)

sPHENIX simulation, 1D projective EMCal only, full B EIC RD1 study FermiLab beam tests, 1D projective EMCal 1GeV electron is B-bended by 0.45 rad → higher SF. and performance **→**0.18 Electrons Data, $\eta = 0.3-0.4$ Electrons, $\eta = 0.3-0.4$ olntion, 0.14 energy resolution, 80.0 0110 80.0 01101, Electrons Data - 2.7% Beam △E $\Delta E/E = 1.5\% + 8.4\%/\sqrt{E}$ $\Delta E/E = 2.8\% \oplus 12.2\%/\sqrt{E}$ $\Delta E/E = 1.2\% + 11.1\%/\sqrt{E}$ <u>0</u>0.12 $\Delta E/E = 2.7\% \oplus 12.1\%/\sqrt{E}$ Photons, $\eta = 0.3-0.4$ $\Delta E/E = 2.9\% \oplus 12.0\%/\sqrt{E}, E \ge 2 \text{ GeV}$ energy 80.0 80.0 $\Delta E/E = 1.7\% + 10.1\%/\sqrt{E}$ $\Delta E/E = 1.5\% + 10.4\%/\sqrt{E}, E \ge 2 \text{ GeV}$ Consistent perf. for EM shower 90.06 80.04 90.06 40.04 0.02 0.02 10 15 20 30 12

Beam Energy (GeV)

Energy resolution inspections

Simulated on SPACAL without VTX and in full magnetic field

- 1GeV electron is bended by 0.45 rad → performance ~ photon w/ eta of 0.45 and view higher SF.
- For EIC, Resolution ~< 12%/VE for electrons after magnetic field bending
- For sPHENIX, Resolution ~< 14%/VE for direct photons

1D SPACAL, No SVX, Sum all tower No photo-electron fluctuation/pedestal noise 1D SPACAL, No SVX,
Pedestal noise (2ADC), photon fluctuation (500e/GeV)

2D SPACAL, No SVX,
Pedestal noise (2ADC), photon fluctuation (500e/GeV)

Energy resolution for full detector

Full detector Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (8pe), photon fluctuation (500pe/GeV), Zero sup (16pe), Graph clusterizer

Dynamic range plot

50 GeV photon shower in 2D-projective SPACAL, all eta ranges Plot photon observed per tower per event, max $^{\sim}$ 22k photon/tower, pedestal σ^{\sim} 8 photon, range $^{\sim}$ 12bit (max/pedestal 1 σ)

Trigger efficiency – 2D SPACAL

Upsilon events required |eta_e|<1, reconstructed |mass – 9.6GeV| < 2 sigma Result: ~10e4 rejection at ~98% efficiency

- Tail of Upsilon mass peak excluded for avoiding radiated photon, which are triggered with noticeably lower eff.
- Assumed trigger sum all combination of 4x4 towers, rather than sum of $2x2 \rightarrow 4x4$
- Realistic trigger would use reduced ADC bits, e.g. 8-bit. Performance did not significantly changed.
- 2D SPACAL showed. 1D SPACAL required larger cluster at the forward region

Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (8pe), photon fluctuation (500pe/GeV), Zero sup (16pe/32MeV), Graph Clusterizer

Occupancy in Hijing

Volumetric energy density shown

Occupancy – 0-10% Hijing

Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (8pe), photon fluctuation (500pe/GeV), Zero sup (16pe/32MeV), Graph Clusterizer

Note the zero-suppression at 32 MeV.

Scientific review (no digitalization, 1D proj.)

Track projection checks

- ▶ In discussion about current problem:
 - https://github.com/sPHENIX-Collaboration/coresoftware/pull/69
 - One quick solution suggested
- Result plot:
 8GeV electron track projection to 2D projective SPACAL

Track projection checks – Removing

Tracking reco precision

Tracking reco precision

radiative tails Probability per bin **Full sPHENIX** Single electron + Geant4 75% within +/-5% 15% tails√ + Digitalization + Tracking **CEMC Tower Energy Distribution CEMC Tower Energy Distribution** 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Azimuthal Distance (Tower Width) p_{T, reco}/p_{T, truth} 10 **Azimuthal Distance** 10 10 10 Polar Distance (Tower Width) Polar Distance (Tower Width)

All reconstructed tracks

Track with pT reco within 5% of truth (sample for eID ana.)

Extra information

Upsilon simulation and selection

Photon resolution [Megan and Stefan]

- PHENIX Clusterizer from Sasha B. survived PHENIX->sPHENIX migration.
 - Promising use of the PHENIX Clusterizer in HI embedded events
- Fit with Gaus
- [0]*exp(-0.5*((x-[1])/[2])**2)

Plots from Megan Connors (GSU) henergy

Older Pro1.Beta3 plots

Sampling Fraction

DrawSF.pdf

uang/sPHENIX_work/single_particle/DrawEcal

Linearality – double checking

Energy resolution Simulated with single photons

Full detector Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (8pe), photon fluctuation (500pe/GeV), Zero sup (16pe), Graph clusterizer

sPHENIX full detector single photon simulation

EIC RD1 study
FermiLab beam tests

Photon resolution [Megan and Stefan]

- PHENIX Clusterizer from Sasha B. survived PHENIX->sPHENIX migration.
 - Promising use of the PHENIX Clusterizer in HI embedded events
- Fit with Gaus
- [0]*exp(-0.5*((x-[1])/[2])**2)

Plots from Megan Connors (GSU) henergy

